Tendon and Ligament Tissue Engineering, Healing and Regenerative Medicine
نویسندگان
چکیده
Tendons transmit forces from muscle to bone and provide the joint function and ligaments transmit forces from bone to bone and provide joint stability. Tendon and ligament injuries have high incidence and management of tendon and ligament injuries is technically demanding because the healing response of these soft connective tissues is low. In addition, number of the available options to be considered as tissue replacement for large defects is low and healing of tendon and ligaments is faced to significant limitations. Among the available options, autografts are still gold standard but all the autoallo and xenografts have their own limitations. Tissue engineering is a newer option but it is still primitive to be applicable extensively, in clinical setting. Tissue engineering could be divided into four categories including scaffolds, healing promotive factors, stem cells and gene therapy. To be able to have a good judgment regarding the management of tendon and ligament injuries, it is crucial to have a basic knowledge of tendon and ligament healing and regeneration. In this review, we discussed various types of tendon and ligament injuries and their incidence, and introduced the available and future options in managing large and massive tendon and ligament injuries. We specifically discussed the tissue engineering and it’s advantageous and disadvantageous. To give a better clarification for the readers, we described different phases and cascades of tendon and ligament healing, modeling and remodeling, host-graft interaction after implantation of the graft and various types of prosthetic implants and finally provided some suggestions for the future investigations. *Corresponding author: Dr. Ahmad Oryan, Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran, Tel: +987116288662; E-mail: [email protected] Received August 05, 2013; Accepted September 05, 2013; Published September 08, 2013 Citation: Moshiri A, Oryan A (2013) Tendon and Ligament Tissue Engineering, Healing and Regenerative Medicine. J Sports Med Doping Stud 3: 126. doi:10.4172/2161-0673.1000126 Copyright: © 2013 Moshiri A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
منابع مشابه
Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs
Tendon and ligaments have poor healing capacity and when injured often require surgical intervention. Tissue replacement via autografts and allografts are non-ideal strategies that can lead to future problems. As an alternative, scaffold-based tissue engineering strategies are being pursued. In this review, we describe design considerations and major recent advancements of scaffolds for tendon/...
متن کاملAdipose derived stromal vascular fraction improves early tendon healing: an experimental study in rabbits
Tendon never restores the complete biological and mechanical properties after healing. Bone marrow and recently adipose tissue have been used as the sources of mesenchymal stem cells, which have been proven to enhance tendon healing. Stromal vascular fraction (SVF), derived from adipose tissue by an enzymatic digestion, represents an alternative source of multipotent cells, which undergo differ...
متن کاملApplications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine.
Knitting is an ancient and yet, a fresh technique. It has a history of no less than 1,000 years. The development of tissue engineering and regenerative medicine provides a new role for knitting. Several meshes knitted from synthetic or biological materials have been designed and applied, either alone, to strengthen materials for the patching of soft tissues, or in combination with other kinds o...
متن کاملHistopathological and Biomechanical Survey on Effect of CoQ10 in Combination with Chitosan Conduit on Deep Digital Flexor Tendon Healing in Rabbits
Objective- Chitosan is of great interest in regenerative medicine because of its plentiful properties, like biocompatibility, biodegradability and non-toxicity. The objective of the present study was histopathological and biomechanical survey on effect of CoQ10 in combination with chitosan conduit on deep digital flexor tendon (DDFT) healing in rabbits. Design-</s...
متن کاملEffects of rabbit pinna-derived blastema cells on tendon healing
Objective(s): Tendon healing is substantially slow and often associated with suboptimal repair. Cell therapy is one of the promising methods to improve tendon repair. Blastema, a population of undifferentiated cells, represents characteristics of pluripotent mesenchymal stem cells and has the potentials to be used in regenerative medicine. The aim of this study was to ...
متن کامل